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ABSTRACT

This paper describes the Automated Scheduling and
Planning Environment (ASPEN). ASPEN encodes
complex spacecraft knowledge of operability constraints,
flight rules, spacecraft hardware, science experiments
and operations procedures to allow for automated
generation of low level spacecraft sequences. Using a
technique called iterative repair, ASPEN classifies
constraint violations (i.e., conflicts) and attempts to
repair each by performing a planning or scheduling
operation. It must reason about which conflict to resolve
first and what repair method to try for the given conflict.
ASPEN is currently being utilized in the development of
automated planner/scheduler systems for several
spacecraft, including the UFO-1 naval communications
satellite and the Citizen Explorer (CX1) satellite, as well
as for planetary rover operations and antenna ground
systems automation. This paper focuses on the algorithm
and search strategies employed by ASPEN to resolve
spacecraft operations constraints, as well as the data
structures for representing these constraints.

1. INTRODUCTION

Planning and scheduling technology offers considerable
promise in automating spacecraft operations. Planning
and scheduling spacecraft operations involves generating
a sequence of low-level spacecraft commands from a set
of high-level science and engineering goals (see [Chien
et al., 1998b] for an overview). We discuss ASPEN and
its use of an iterative repair algorithm for planning and
scheduling as well as for replanning and rescheduling.

ASPEN is a reconfigurable planning and scheduling
software framework [Fukunaga et al., 1997]. Spacecraft
knowledge is encoded in ASPEN under seven core model
classes: activities, parameters, parameter dependencies,
temporal constraints, reservations, resources and state
variables. An activity is an occurrence over a time
interval that in some way affects the spacecraft. It can
represent anything from a high-level goal or request to a

low-level event or command. Activities are the central
structures in ASPEN, and also the most complicated. A
more detailed definition is given in a later section.
Together, these constructs can be used to define
spacecraft components, procedures, rules and constraints
in order to allow manual or automatic generation of valid
sequences of activities, also called plans or schedules.

Once the types of activities are defined, specific instances
can be created from the types. Multiple activity instances
created from the same type might have different
parameter values, including the start time. Many camera
imaging activities, for example, can be created from the
same type but with different image targets and at
different start times. The sequence of activity instances is
what defines the plan.

The job of a planner/scheduler, whether manual or
automated, is to accept high-level goals and generate a
set of low-level activities that satisfy the goals and do not
violate any of the spacecraft flight rules or constraints.
ASPEN provides a Graphical User Interface (GUI) for
manual generation and/or manipulation of activity
sequences. However, the automated planner/scheduler
will be the focus of the remainder of this paper.

In ASPEN, the main algorithm for automated planning
and scheduling is based on a technique called iterative
repair [Zweben et al., 1994]. During iterative repair, the
conflicts in the schedule are detected and addressed one
at a time until no conflicts exist, or a user-defined time
limit has been exceeded. A conflict is a violation of a
reservation, parameter dependency or temporal
constraint. Conflicts can be repaired by means of several
predefined methods. The repair methods are: moving an
activity, adding a new instance of an activity, deleting an
activity, detailing an activity, abstracting an activity,
making a reservation of an activity, canceling a
reservation, connecting a temporal constraint,
disconnecting a constraint, and changing a parameter
value. The repair algorithm may use any of these
methods in an attempt to resolve a conflict. How the



algorithm works is largely dependent on the type of
conflict being resolved.

Specifically, we haven taken a most-committed, local,
heuristic, iterative repair approach. This approach has
many desirable properties for spacecraft operations
planning. First, using a repair algorithm allows
automated planning to be utilized at any time and on any
given initial plan. The initial plan may be as incomplete
as a set of goals, or it may be a previously produced plan
with only a few flaws. Repairing an existing plan enables
fast replanning when necessary from manual plan
modifications or from unexpected differences detected
during execution. Second, heuristics allow the search to
be pruned, ruling out less promising planning choices. In
addition, heuristics may also suggest particular choices
that may lead to a solution in less time, or to a higher
quality solution. Third, a local iterative algorithm does
not incur the overhead of maintaining intermediate plans
or past repair attempts. This allows the planner to
quickly try many plan modifications for repairing the
conflicts. However, unlike systematic search algorithms,
it cannot be guaranteed that our iterative repair algorithm
will explore all possible combinations of plan
modifications or that it will not retry unhelpful
modifications. In our experience, these guarantees are not
worth the required overhead. Finally, by committing to
values for parameters, such as activity start times and
resource usages, the effects of a resource usage and the
corresponding resource profiles can be efficiently
computed. Least-commitment techniques retain plan
flexibility, but can be computationally expensive for large
applications. Further discussions on this topic can be
found in [Chien et al., 1998b].

The full paper will describe the ASPEN search structure
in greater detail. We will describe the constraints that
can be modeled in ASPEN, as well as the conflicts for
each type of constraint violation. We will also describe
how the search can be influenced using heuristics.
Finally, we will discuss current, future and related work.

2. MODEL COMPONENTS AND CONSTRAINTS

Spacecraft models are developed in the ASPEN Modeling
Language (AML) [B. Smith et al., 1998; Sherwood et al.,
1998]. These models are parsed into data structures that
provide efficient reasoning capabilities for planning and
scheduling. There are seven basic components to an
ASPEN model: activities, parameters, parameter
dependencies, temporal constraints, resources, state
variables, and reservations. Together, they describe what
the spacecraft can and cannot do during operations.

A parameter is simply a variable with a restricted
domain. One parameter, for example, can be the range of
integers between ten and twenty. Other parameter types
include floating point numbers, booleans and strings. A
parameter dependency is a functional relationship
between two parameters. An activity end time, for
example, is a function (the sum) of the start time and the
duration. A more complicated dependency might
compute the duration of a spacecraft slew from the initial
and final orientation.

In the model, relative ordering constraints can be
specified for pairs of activities. A temporal constraint is a
relationship between the start or end time of one activity
with the start or end time of another activity (see Figure
1). One might specify, for example, that an instrument
warming activity must end before the start of an activity
that uses the instrument. Minimum and maximum
separation distances can be specified in a temporal
constraint. The warming activity for example, might be
required to end at least one second but at most five
minutes before using the instrument. Temporal
constraints can be combined with conjunctive or
disjunctive operators to form more complicated
expressions.

A resource represents the profile of a physical resource
or system variable over time (see Figure 2), as well as the
upper and lower bounds of the profile. In ASPEN, a
resource can either be depletable or non-depletable. A
depletable resource is used by a reservation and remains
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Figure 1: A temporal constraint with a required
separation of at least 1 second and at most 5
minutes.
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Figure 2: Timelines for activities, a depletable resource
(energy), a non-depletable resource (power), and a state
variable (device).



used even after the end of the activity making the
reservation. Examples of depletable resources on
spacecraft include memory, fuel and energy. A non-
depletable resource is used only for the duration of the
activity making the reservation. Power is an example of a
non-depletable resource. A resources can be assigned a
capacity, restricting its value at any given time. A state
variable represents the value of a discrete system variable
over time. The set of possible states and the set of
allowable transitions between states are both defined with
the state variable. An example of a state variable is an
instrument switch that may be either ON, WARMING, or
OFF. This state variable may be restricted to transitions
from OFF to WARMING and not directly to ON.
Reservations are requirements of activities on resources
or state variables. For example, an activity can have a
reservation for ten watts of power. Some reservations are
modeled as instantaneous effects (e.g., reservations that
change the state on a state variable). The user can specify
whether this effect occurs at the start or end of the
activity.

Activity hierarchies can be specified in the model using
decompositions (see Figure 3). A decomposition is a set
of sub-activities along with temporal constraints between
them. In this way, one can define a high-level activity
that decomposes into a set of lower-level activities that
may be required to occur in some relative order. These
activities in turn may have their own decompositions. In
addition, an activity may have multiple decompositions
to choose from. Thus, allowing an activity to be
expanded in different ways.

An activity has a set of parameters, parameter
dependencies, temporal constraints, reservations and
decompositions. All activities have at least three
parameters: a start time, an end time and a duration.
There is also at least one parameter dependency, relating
these three parameters. In addition, all activities have at
least one temporal constraint that prevents the activity
from occurring outside of the planning horizon. Any
additional components are optional.

3. CONFLICTS

A complete plan may not always be consistent with the
constraints in the model. A conflict is a violation of one
of the model constraints. We define ten basic types of
conflicts in ASPEN:

• Abstract activity conflicts
• Unassigned parameter conflicts
• Violated parameter dependency conflicts
• Unassigned temporal constraint conflicts
• Violated temporal constraint conflicts
• Unassigned reservation conflicts
• Depletable resource conflicts
• Non-depletable resource conflicts
• State requirement conflicts
• State transition conflicts.

Each conflict provides information about what objects are
involved and how to repair the conflict.

An abstract activity conflict is simply an activity that has
not yet been decomposed into its sub-activities. All
activities must be expanded to their most detailed level. If
an activity has more than one decomposition, the
planning algorithm must decide which decomposition to
use when detailing the activity. Detailing an activity
involves creating instances of the activities specified in
the decomposition. In addition, all temporal constraints
and parameter dependencies must be connected among
the new sub-activities and the parent activity.

An unassigned parameter conflict is a parameter that
does not have a unit value. A parameter can be a range or
a set of values. However, this is a conflict in the plan
until a value, chosen from the range or set, has been
assigned to the parameter.

A violated parameter dependency conflict is a violation
of a functional relationship between two parameters. In
other words, the value of a parameter is not equal to the
result of a function that constrains that parameter value.
For example, a parameter p may be required to be the
square of another parameter q. If q is assigned to 5 and p
is assigned any value other than 25, this will be a
parameter dependency conflict. This conflict can be
resolved by assigning a different value to either p or q.

An unassigned temporal constraint conflict occurs when
a temporal constraint exists for an activity, but an activity
instance has not been selected to satisfy the constraint
(see Figure 4). A temporal constraint is defined in one
activity type A and specifies the requirement for another
activity B within some temporal relationship. When an
instance of A is created, the temporal constraint is created
and is not initially assigned an instance of B. The conflict

Figure 3: An activity hierarchy.



computes all activity instances that can repair this
conflict (basically, all instances of type B).

A violated temporal constraint conflict occurs when a
temporal constraint has been assigned, but the
relationship (specified in the model) does not hold for the
two participating activities (see Figure 5). For example,
consider an activity instance A that must end before the
start of activity instance B by at least 10 seconds but at
most 1 minute. If A ends at time t , then there is a
conflict if B does not start between time t +10 and t +60.
The conflict keeps track of the contributing activities,
which in this example includes activities A and B. In
addition, the conflict computes the start time intervals for
moving an activity that would repair the conflict.
Continuing with the example, the repair interval for B
would be from t +10 to t +60. Activity A could also be
moved to a different repair interval.

An unassigned reservation conflict is a reservation in an
activity that has not been assigned to a resource or state
variable of the required type. Resource and state variable
types are defined in the model, and the plan can have
multiple instances of the same type (e.g., multiple power
sources). The plan keeps a timeline for each instance
representing the value of the resource or state variable
value. An unassigned reservation conflict is repaired by
selecting a resource or state variable instance and making

the reservation (i.e., propagating the effects of the
reservation on the timeline).

The most complicated types of conflicts are violated
timeline conflicts. A conflict can occur on a depletable
resource, a non-depletable resource, or a state variable.
For state variables, there are two types of conflicts: state
usage and state transition conflicts.

When a resource value at a particular time exceeds the
minimum or maximum bounds of the resource, a conflict
is generated. The contributing activities are the activities
with reservations that use the resource during the time of
the conflict (see Figures 6 and 7). For non-depletables,
these are the reservations that overlap, exceeding the
resource bounds. For depletables, these are all
reservations on the timeline that occur at or before the
conflict. If the value is above the resource maximum (i.e.,
overuse), then contributors are only those activities with
reservations that reserve a positive value. Those with
negative values are contributors when the resource value
is below the minimum (i.e., underuse). The conflict also
knows which activity types would repair the conflict if a
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Figure 5: A violated temporal
constraint conflict.
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Figure 7: Time intervals that resolve a depletable
resource conflict by a) moving a positive contributor or
b) adding a negative contributor.
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Figure 6: Time intervals that resolve a non-depletable
resource conflict by a) moving a positive contributor or
b) adding a negative contributor.
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Figure 4: An unassigned temporal constraint conflict
requiring an activity of type B. Any of b1, b2 or b3
can be use, or a new instance of type B can be added.



new instance were created. This includes activity types
with negative usage for overuse conflicts and types with
positive usage for underuse conflicts. The conflict also
computes the start times indicating where to move or add
activities in order to repair the conflict (see Figures 6 and
7). For moving existing activities, repair start times are
all times except during the conflict. For adding new
activities, repair start times are just the opposite—times
during the conflict.

A state variable can have a conflict in two ways: when a
reservation requires a state that is not available for the
duration of the reservation (i.e., state requirement
conflict), or when a reservation makes a transition that is
not allowed by the state variable (i.e., state transition
conflict). The contributors of a state usage conflict
include the activity that changes the state (called a
changer) and all activities that use a state (called users)
that is different from the state during the time of the
conflict (see Figure 8). In order to fix this conflict, the
users might be moved anywhere but over the state in
conflict. Otherwise, if we decide to move the changer, it
must be moved to a time later than the state in conflict or
earlier than the previous state so that this changer no
longer affects the state required by the conflicting users.
For state transition conflicts, the contributor is only the
activity that changes the state (i.e., makes the illegal
transition). Again, the changer must be moved to a time
later than the state in conflict or earlier than the previous
state. As with resource conflicts, new activities can be
created to repair state variable conflicts. For a state usage
conflict, we can add activities that can change to the
desired state. These activities must be added at a time
before the conflicting user, but after the conflicting
changer. For state transition conflicts, we can add

activities that can change to a state that makes a legal
transition. These activities must be added between the
two conflicting changers.

4. ITERATIVE REPAIR SEARCH

ASPEN organizes its search around several types of
constraints that must hold over valid plans. ASPEN then
has organized around each constraint type, a
classification of the ways in which the constraint may be
violated.  These violations are called conflicts. Organized
around each conflict type, there is a set of repair
methods. The search space consists of all possible repair
methods applied to all possible conflicts in all possible
orders. We describe one tractable approach to searching
this space.

The iterative repair algorithm searches the space of
possible schedules in ASPEN by making decisions at
certain choice points, and modifying the schedule based
on these decisions. The choice points are:

• Selecting a conflict
• Selecting a repair method
• Selecting an activity for the chosen repair method
• Selecting a start time for the chosen activity
• Selecting a duration for the chosen activity
• Selecting timelines for reservations
• Selecting a decomposition for detailing
• Selecting parameters to change
• Selecting values for parameters

Given a schedule with a set of conflicts of all types, the
first step in the iterative repair algorithm is to select one
of the conflicts to be attacked. Next, a method is selected
for repairing the conflict. We define the possible repair
methods as:

• Moving an existing activity to a new location
• Creating a new activity and insert at a location
• Deleting an existing activity
• Connecting a temporal constraint between two

activities
• Disconnecting a temporal constraint between two

activities
• Detailing an activity
• Abstracting an activity
• Making reservations of an activity
• Canceling reservations of an activity
• Grounding a parameter in an activity
• Applying a dependency function between two

parameters
As described in the previous section, the type of conflict
will determine the set of possible repair methods for any
given conflict. If it was decided to try to move or delete
an activity, the algorithm must decide which activity to
move or delete. The type of conflict and the location of
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Figure 8: Time intervals that resolve a state variable
usage conflict by a) moving UseOn1 b) moving
TurnOff2 or c) adding TurnOn; and time intervals that
resolve a state variable transition conflict by d) moving
TurnOn1 e) moving TurnOff1 or f) adding Warm.



the conflict will determine the set of possible activities
that, if moved or deleted, may resolve the conflict. In
addition, a new start time and duration must be assigned
to the activity. If it was decided to try to add a new
activity, the activity type must be chosen from the list of
possible types determined by the conflict. For abstract
activity conflicts, the repair algorithm will most li kely
choose to detail the activity. If it has multiple
decompositions, one of them must be chosen. Deciding to
abstract an activity requires choosing which activity to
abstract. When making a reservation in an attempt to
resolve a conflict, a resource or state variable must be
chosen for the set of possible resources or state variables.
Also, if the reservation has an unspecified value, one
must be chosen for it. Canceling reservations only
requires choosing which reservation to cancel. If the
repair algorithm has decided to connect a temporal
constraint, the specific activity for the constraint must be
selected. When disconnecting, only the constraint to be
disconnected must be chosen. Finally, changing a
parameter value requires choosing a new value for the
parameter. After all decisions are made and the repair
method is performed, the effects are propagated and the
new conflicts are computed. This process repeats until no
conflicts exist or a time limit has been exceeded.

5. SEARCH HEURISTICS

All throughout the iterative repair algorithm, many
decisions must be made. In other words, there are many
ways in which a conflict may be resolved. Some ways
ultimately work better than others do. For example,
deleting an activity may resolve a resource conflict
caused by that activity. However, that activity may have
been required by other activities. Or, if the activity was a
high-level goal, the user might prefer to have as many
goals satisfied as possible. Another typical example
involves choosing a location to move an activity. Many
locations may resolve the conflict being addressed, but
many locations may also create addition conflicts. In
order to guide the search toward more fruitful decisions,
the user can define a set of search heuristics.

In ASPEN, a heuristic is a function that orders and
prunes a list of choices for a particular decision in the
search. Heuristics can be defined at each of the choice
points in the algorithm. For example, one heuristic might
sort the list of conflicts, indicating which conflicts to
address first. In addition, each heuristic can use the
knowledge of all previous decisions made. For example,
the heuristic for deciding which method to use to resolve
the conflict can (and should) be dependant on which
conflict was chosen. Each heuristic can be assigned a
confidence level that indicates how often the heuristic

should be used. When the heuristic is not used, other
heuristics can be specified, otherwise the decision will be
made randomly.

ASPEN currently has some built-in domain-independent
heuristics that can be used for repairing conflicts. First, a
heuristic exists for sorting conflicts by their type. This
heuristic prefers conflicts that require new activities (i.e.,
planning type conflicts) and then considers conflicts on
timelines (i.e., scheduling type conflicts). This heuristic
seems to work well and therefor has a high level of
confidence for most of our models.

There is also a heuristic for selecting the repair method
for a given conflict type. This heuristic prefers moving
activities for repairing most types of conflicts. If move is
not selected, the next preferred method is adding new
activities. Finally, a small percentage of the time, it will
choose to delete an activity. Obviously, these methods are
only chosen for those conflicts for which they make sense
(e.g., timeline conflicts). Some conflicts have only two
possible repair methods, one of which is to delete,
therefor making the decision much easier (e.g.,
undetailed activity conflicts can only be resolved by
detailing or deleting the activity).

Another significant heuristic available in ASPEN is a
heuristic for selecting start time intervals for activities
being moved or created. This heuristic first tries selecting
start time intervals that not only resolve the current
conflict but also do not create any new conflicts1. If there
are no such start times, the heuristic may try selecting
times that create only a few conflicts. If this list is also
empty, then it may select start times that simply resolve
the current conflict. Sometimes, however, it may decide
to return an empty list, indicating that this particular
activity should not be moved or added.

A few other heuristics are currently being used in some
of the domains modeled in ASPEN. All of them,
however, are relatively simple and work well for the wide
range of ASPEN models.

6. RELATED WORK

This work builds on considerable previous work in
iterative repair problem solving.  The high-speed local
                                               
1 In general, ASPEN provides functions for querying the
current plan about operations that can be performed or
values that can be assigned without creating new
violations. These algorithms are interesting in their own
right, and will be discussed in future work.



search techniques used in ASPEN are an evolution of
those developed for the DCAPS system [Chien et al.,
1998a] that has proven robust in actual applications.  In
terms of related work, iterative algorithms have been
applied to a wide range of computer science problems
such as traveling salesman [Lin & Kernighan, 1973] as
well as Artificial Intelligence Planning [Chien &
DeJong, 1994; Hammond, 1989; Simmons, 1988;
Sussman, 1973]. Iterative repair algorithms have also
been used for a number of scheduling systems.  The
GERRY/GPSS system [Zweben et al., 1994; Deale et al.,
1994] uses iterative repair with a global evaluation
function and simulated annealing to schedule space
shuttle ground processing activities.  The Operations
Mission Planner (OMP) [Biefeld & Cooper, 1991] system
used iterative repair in combination with a historical
model of the scheduler actions (called chronologies) to
avoid cycling and getting caught in local minima.  Work
by [Johnston & Minton, 1994] shows how the min-
conflicts heuristic can be used not only for scheduling but
also for a wide range of constraint satisfaction problems.
The OPIS system [S. Smith, 1994] can also be viewed as
performing iterative repair.  However, OPIS is more
informed in the application of its repair methods in that
it applies a set of analysis measures to classify the
bottleneck before selecting a repair method.  With
iterative repair and local search techniques, we are
exploring approaches complementary to backtracking
refinement search approach used in the New Millennium
Deep Space One Remote Agent Experiment Planner
[Muscettola et al., 1997].

7. CONCLUSIONS AND FUTURE WORK

Planning and scheduling technology offers considerable
promise in automating spacecraft operations. Planning
and scheduling spacecraft operations involves generating
a sequence of low-level spacecraft commands from a set
of high-level science and engineering goals. We have
extended and implemented a technique called iterative
repair for automatically resolving conflicts in a
plan/schedule. In addition, we have isolated a set of
conflict types that identify plan violations as well as
suggest ways in which to repair the violation.

Current and future work includes integrating repair
planning with execution [Chien et al., 1999]. Here, the
idea is to continuously replan around updated
information coming from execution monitoring. As an
embedded system, ASPEN would enable fast response to
unforeseen events (e.g., faults or science opportunities)
with little or no human interaction. In addition, we are
also working on a framework for plan optimization. In
this case, the objective is to find plans with high quality

in addition to being conflict-free. We take an approach
that parallels iterative repair called iterative
optimization. Here, we classify a set of user preferences
for certain plan characteristics. These preferences are
used to calculate a score for the plan. The iterative
optimization algorithm makes plan modifications
suggested by the preferences in order to increase the
overall score.
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