ITERATIVE REPAIR PLANNING FOR SPACECRAFT OPERATIONS USING THE ASPEN SYSTEM

Gregg Rabideau, Russell Knight, Steve Chien, Alex Fukunaga, Anita Govindjee

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109-8099
phone: +1 818 393-5364, fax: +1 818 393-5244, email: {firstname.lastname}@jpl.nasa.gov

ABSTRACT

This paper describes the Automated Scheduling and
Planning Environment (ASPEN). ASPEN encodes
complex spacecraft knowledge of operapitibnstraints,
flight rules, spacecraft hardware, saeneperiments
and operations procedures to wallofor automated
generation of lov level spacecraft sequences. Using a
techniqe alled iterative repair, ASPEN classifies
constraint violations (i.e.conflicty and attempts to
repair each Y performing a planning or scheduling
operation. 1 must reason about which conflito resolve
first and what repair method toytfor the given conflict.
ASPEN is currentl being uilized in the development of
automatd panner/scheduler systems for several
spacecraft, including the UFO-1 naval communications
satellite and the Citizen Explorer (CX1) satellite, as well
as for planetar rover operations and antenna ground

low-level event or command. Activities areetleentral
structures in ASPEN, and also the most complicated. A
more detaild definition is given in a later section.
Together, thes mnstructs can be used to define
spacecraft components, procedures, rules and constraints
in order to allev manual or automatic generation of valid
sequences of activities, also calf@dnsor schedules

Once the types of activities are defined, specific instances
can ke ceated fron the types. Multiple actiwt instances
created from the same type might have different
parameter values, including the stdime. Mary camera
imaging activities, for example, car lweated fron the
same type but with differéenimage targets and at
different start times. The sequence of agtiiistances is
what defines the plan.

The pb d a planner/scheduler, whether manual or

systems automation. This paper focuses on the algorithm automated, is to accept high-level goalsl apgnerate a

and search strategies employeg ASPEN to resolve

set of low-level activities that satysthe goals and do not

spacecraft operations constraints, as well as the dataviolate ary of the spacecraft flight rules or constraints.

structures forepresenting these constraints.
1. INTRODUCTION

Planning and scheduling technojogffers considerable
promise in automating spacecraft operations. Planning

ASPEN provides a Graphical User Interface (GUI) for
manual generation and/or manipulation of activity
sequences. However, the autondatdanner/scheduler
will be the focus of the remainder of this paper.

In ASPEN, the main algorithm for automdtganning

and scheduling spacecraft operations involves generating and scheduling is based on a techeigalled iterative
a sequence of low-level spacecraft commands from a set repair [Zweben et al., 1994]. During iterative repair, the

of high-level science and engineggigoals (see [Chien
et al., 1998b] for an overview). We discuss ASPEN and
its use of ariterative repairalgorithm for planning and
scheduling as well as for replanning and rescheduling.

ASPEN is a reconfigurable planning and scheduling
software framework [Fukunaga et al., 1997]. Spacecraft

conflicts in the schedule are detected and addressed one
at a time until no conflicts exist, or a user-defined time
limit has been exceeded. A conflics a violation of a
reservation, parameter dependencor temporal
constraint. Conflicts can be repaireg heans of several
predefined methods. The repair methods amving an
activity, adding a ne instance of an activity, deleting an

knowledge is encoded in ASPEN under seven core model activity, detailing an activity, abstracting an activity,

classes: activities, parameters, parameter dependenciesmaking a reservation of an activity,
temporal constraints, reservations, resources and statereservation,

variables. An activit is an occurrence over a time
intervd tha in some wg affects the spacecraft. It can
represent anything from a high-level goalreques to a

canceling a
connecting a temporal constraint,
disconnecting a constraint, and changing a parameter
value. The repair algorith may use amy of these
methods in an atterbfgo resolve a conflict. He the

algorithm works is larggl dependent on the type of
conflict being resolved.

Specifically, we haven taken a most-committed, local,
heuristic, iterative repair approach. This apphodas
mary desirable properties for spacecraft operations
planning. First, using a repair algorithm allows
automated planningtbe utilized at aptime and on any
given initial plan. The initial plan nyabe as incomplete
as a set of goals, @rmay be a previousl produce pan
with only a few flaws. Repairing an existing plan enables
fast replanning whe necessar from manual plan
modifications or from unexpedtedfferences detected
during execution. Second, heuristics wailthe search to
be pruned, ruling out less promising planning choices. In
addition, heuristics maalso suggest particular choices
tha may lead to a solution in less time, or to a higher
quality solution. Third, a lodaiterative algorithm does
not incur the overhead of maintaining intermediate plans
or past repair attempts. This allows the planner to
quickly try mary plan modifications fo repairing the
conflicts. However, unlike systematic search algorithms,
it cannot be guaranteed that our iterative repair algorithm
will explore all possil# ombinations of plan
modifications or tha it will not retry unhelpful

modifications. In our experience, these guarantees are not

worth the required overhead. Finallyy bommitting to
values for parameters, such as agtigtat times and
resource usages,ehdfects of a resource usage and the
corresponding resource profiles cane bdficiently
computed. Least-commitmentechniques retain plan
flexibility, but can be computationglexpensive for large
applications. Further discussions on this ¢ogan be
found in [Chien et al., 1998b].

The full paper will describe the ASPEN search structure
in greater detail. We will describe gh®nstraints that
can be modeled in ASPEN, as well ag tbnflicts for
each type of constraint violation. We will also describe
how the search can be influemteusing heuristics.
Finally, we will discuss current, future and related work.

2. MODEL COMPONENTS AND CONSTRAINTS

Spacecraft models are developed in the ASPEN Modeling
Language (AML) [B. Smith et al., 1998; Sherwood et al.,
1998]. These models are parsed into data structures tha
provide dficient reasoning capabilities for planning and
scheduling. There are seven lbasbmponents to an
ASPEN model: activities, parameters, parameter
dependencies, temporal constraints, resources, state
variables, and reservations. Togetheryttiescribe what
the spacecraft can and cannot do during operations.

A parameteris smply a variable with a restricted
domain. One parameter, for example, can be the range of
integers between ten and twenty. Other parameter types
include floatirg point numberspodeans and strings. A
parameter dependencyis a functional relationship
between two parameters. An actyiend time, for
example, is a function (the sum) of the stane and the
duration. A moe omplicatel dependeng might
compute the duration of a spacecraftsstieom the initial

and final orientation.

In the model, relative ordering constraints can be
specified for pairs of activities. femporalconstraintis a
relationship between the start or end time of one activity
with the start or end time of another actsee Figure

1). One might specify, for example, that an instrument
warming activiy must end before the start of an activity
that uses the instrument. Minimum and maximum
separation distances can be specified in a temporal
constraint. The warming actiyitfor example, might be
required to end taleast one second but aost five
minutes before using the instrument. Temporal
constraints can é& @mbined with conjunctive or
disjunctive operators to for more @mplicated
expressions.

—t—

[1s 5m

——

Figure 1: A temporal constraint with a required
separation of at least 1 second and at most 5
minutes.

A resourcerepresents the profile of a physical resource
or system variable over time (see Figure 2), as well as the
upper and lower bounds of the profile. In ASPEN, a
resouce @n either be depletable or non-depletable. A
depletable resource is useg @ reservation and remains

Recharge Warm Up Tum On
Activities I I I I H Use
Energy _—l
Power
Device OFF | WARM | ON

Figure 2: Timelines for activities, depletable resource
(energy), a nortepletable resource (power), and a state
variable (device).

used even after ¢h end of the activifi making the
reservation. Examples of depletable resources on
spacecrdf include memory, fuel and energy. A non-
depletable resource is used yoffibr the duration of the
activity making the reservation. Power is an example of a

3. CONFLICTS

A complete plan manot always b @nsistent with the
constraints in the model. A conflics a violation of one
of the model constraints. We define ten basic types of

non-depletable resource. A resources can be assigned aconflicts in ASPEN:

capacity, restricting its value atyagiven time. Astate
variablerepresents the value of a discrete system variable
over time. The set of possible states and the set of
allowable transitions between states are both defined with
the state variable. An example of a state variable is an
instrument switch that nysbe either ON, WARMING, or
OFF. The gate variable mabe restricted to transitions
from OFF to WARMING and not diregtlto ON.
Reservationsre requirements of activities on resources
or state variables. For example, an agtivitn have a

¢ Abstract activiy conflicts

¢ Unassigned parameter conflicts

Violated parameter dependermonflicts

» Unassigned temporal constraint conflicts
Violated temporal constraint conflicts

* Unassigned reservation conflicts
Depletable resoge @nflicts

« Non-depletable resoce mnflicts

 State requirement conflicts

« State transition conflicts.

reservation for ten watts of power. Some reservations are Each conflict provides information about what objects are
modeled as instantaneous effects (e.g., reservations thatinvolved and hw to repair the conflict.
change the state on a state variable). The user can specify

whether this effect occurst ahe start or end of the
activity.

Activity hierarchiescan be specified in the model using
decompositions (see Figure 3). A decomposition is a set
of sub-activities along with temporal constraints between
them. In this way, am @an define a high-level activity
that decomposes into a set of lower-level activities that
may be requiredd occur in some relative order. These
activities in turn mg have their own decompositions. In
addition, an activit may have multiple decompositions
to choose from. Thus, allowing an actwito be
expanded in different ways.

H

Finiire 2" An artivir hierarchv

An activity has a set of parameters,
dependencies, temporal constraints,
decompositions. All activities havet aleas three
parameters: a statime, an end time and a duration.
There is alsotdeast one parameter dependency, relating
these three parameters. In addition, all activities have at
least one temporal constraithat prevents the activity
from occurring outside of the planning horizon. Any
additional components are optional.

parameter

reservations and

An abstractactivity conflictis simply an activiy that has

not yet been decomposed intas igib-activities. All
activities must be expanded to their most detailed level. If
an activiy has more than one decomposition, the
planning algoritin must decide which decomposition to
use when detailing the activity. Detailing an activity
involves creating instances of the actistigpecified in

the decomposition. In addition]l aemporal constraints
and parameter dependencies musgt @nnected among
the nev sub-activities and the parent activity.

An unassignedparameterconflict is a parameter that
does not have a unit value. A parameter can be a range or
a set of values. However, this is a corflin the plan

until a value, chosen fno the range or set, has been
assigned to the parameter.

A violated parameterdependencyonflict is a violation

of a functional relationship between two parameters. In
other words, the value of a parameter is not etuthe
result of a function that constrains that parameter value.
For example, a parametpr may be required d ke the
square of another parametgrlf q is assigned to 5 aru

is assigned anvalue other than 25, this will be a
parameter dependencaconflict. This conflict can be
resolved ky assigning a different value to eithior g.

An unassignedemporalconstraintconflict occurs when

a temporal constraint exists for an activity, but an activity
instance has not been selected to satis#¢ onstraint
(see Figure 4). A temporal constrais defined in one
activity type A and specifies the requirement for another
activity B within some temporal relationship. When an
instance ofA is created, the temporal constraint is created
and is not initialy assigned an instance®f The @nflict

Figure 4: An unassigned temporal constraint cor
requiring an activit of type B. Ary of b1, b2 or b3
can be use, or a wanstance of type B can be add

computes all actiwt instances that can repair this
conflict (basically, all instances of ty|B).

A violated temporal constraint conflict occurs when a
temporal constraint has been assigned,t bbe
relationship (specified in the model) does not hold for the
two participating activities (see Figure 5). For example,
consider an actiwtinstanceA tha must end before the
start of activiy instanceB by at least 10 seconds but at
most 1 minute. IfA ends &time t, then there is a
conflict if B does not start between tinhg-10 andt +60.
The onflict keeps track of # ntributing activities,
which in this example includes activitiés and B. In
addition, the conflict computes the start time intervals for
moving an activig that would repair tb ®nflict.
Continuing with tle example, the repair interval fdB
would be fromt +10 tot +60. Activity A could al® be
moved to a different repair interval.

0 9
[10, 60]
7 16

Figure 5: A violated temporal
constraint conflict.

An unassignedeservationconflict is a reservation in an
activity that has not been assigned to a resource or state
variable of the required type. Resource and state variable
types are defined in the model, and the plan bave
multiple instances of the same type (e.g., multiple power
sources). The plan keeps a timeline for each instance
representing the value of the resource or state variable
value. An unassigned reservation cornflie repaired by
selecting a resource or state variable instance and making

the reservation (i.e., propagatingethdfects of the
reservation on the timeline).

The most complicated types of conflicts armlated
timeline conflicts A conflict can occur on a depletable
resource, a non-depletable resource, or a state variable.
For state variables, there are two types of conflicts: state
usage and state transition conflicts.

When a resource value at a particularetieiceeds the
minimum or maximum bounds of the resource, a conflict
is generated. Téh ontributing activities are the activities
with reservations that use the resource during the time of
the onflict (see Figures 6 an7). For non-depletables,
these are the reservations that overlap, exceeding the
resource bounds. For depletables, these are all
reservations on the timeline that occur at or before the
conflict. If the value is bowe the resource maximum (i.e.,
overusg, then contributors are gnthose activities with
reservations that reserve a positive value. Those with
negative values ar®ntributors when the resource value
is belav the minimum (i.e.underusg¢ The ®nflict also
knows which activiy types would repair # ®onflict if a

contributors

a) | [
b)

Figure 6: Time intervals that resolve a niepletable
resouce onflict by a) moving a positive contributor
b) adding a negative contributor.

. contributors

a) [

b) |

Figure 7: Time intervals that resolvelepletable
resouce onflict by a) moving a positive contributor

K AAdAinA A nAamnativiAn AantriladbAr

new instance wer geated. This includes actiyittypes
with negative usage for overaisonflicts and types with
positive usage for underaisonflicts. The ®nflict also
computes the start times indicating where to move or add
activities in order to repair eh@nflict (see Figures 6 and
7). For moving existing activities, repair gtaimes are

dl times except during th onflict. For adding new
activities, repair startimes are justhe opposite—times
during the conflict.

A state varial® @n have a conflitin two ways: when a
reservation requires a state ttha not available for the
duration of the reservation (i.e., state requirement
conflict), or when a reservation makes a transition itha
not allowed l the state variable (i.e., state transition
conflict). The ntributors of a state usagonflict
include the activig that changes the state (called a
changej and all activities that use a state (calleerg

tha is different fron the state during the time of the
conflict (see Figure 8). In order to fix this conflict, the
users might be moved anywhere but over the state in
conflict. Otherwise, if we decide to moveetlthanger, it
must be moved to a time later than the state in conflict or
earlier than the previsudate so thathis changer no
longer affects the state required the cnflicting users.

For state transition conflicts, éhmntributor is ory the
activity that changes the state (i.e., makes the illegal
transition). Again, te dhanger must be moved to a time
later than the state in conflict or earlier than the previous
state. As with resoge onflicts, nev activities can be
created to repair state varialabnflicts. For a state usage
conflict, we @n add activities that can change to the

activities that can change to a statet tmakes a legal
transition. These activities must be added between the
two conflicting changers.

4. ITERATIVE REPAIR SEARCH

ASPEN organizes st sarch around sevdrdypes of
constraints thtamust hold over vall pans. ASPEN then

has organized around each constraitype, a
classification of the ways in whicheéhmonstrain may be
violated. These violations @malled conflicts. Organized
around each conflictype, there is a set of repair
methods. The search ggaonsists of all possible repair
methods applied to all possiblonflicts in all possible
orders. We describe one tractable approach to searching
this space.

The iterative repair algorithm searches the space of
possible schedules in ASPEN Imaking decisions at
certain choice points, and modifying the schedule based
on these decisions. The choice points are:

¢ Selecting a conflict

» Selecting a repair method

¢ Selecting an actiwtfor the chosen repair method

¢ Selecting a start time for the chosen activity

¢ Selecting a duration for the chosen activity

¢ Selecting timelines foreservations

« Selecting a decomposition for detailing

¢ Selecting parameters to change

 Selecting values for parameters
Given a schedule with a set of conflicts tftgpes, the
first step in the iterative repair algonithis to select one

desired state. These activities must be added at a timeof the onflicts to be attacked. Next, a methasl ®lected

before tle ®nflicting user, but after t @nflicting
changer. For state transition conflicts,e wan add

Warml TurnOffl TurnOn1l TurnOff2 UseOnl
H H H H &'H
| WARM | OFF | o | Ohi |
a) I 9
b) I 9
c)
g < —
e) e' I
f)

Figure 8: Time intervals that resolve a state variak
usage conflict pa) moving UseOn1 b) moving

TurnOff2 or ¢) adding@urnOn; and time intervals &l
resolve a state variable transition confligtd) moving

~ a ~rra

for repairing tle ®@nflict. We define the possible repair
methods as:
¢ Moving an existing activitto a nev location
« Creating a n& activity and insert at a location
 Deleting an existing activity
« Connecting a temporal constraint between two
activities
« Disconnecting a temporal constraint between two
activities
« Detailing an activity
¢ Abstracting an activity
* Making reservations of an activity
¢ Canceling reservations of an activity
¢ Grounding a parameter in an activity
* Applying a dependeryc function between two
parameters
As described in the previeuection, the type of conflict
will determine the set of possible repair methods for any
given conflict. If it was decided toytito move or delete
an activity, the algoritim must decide which activtto
move or delete. The type of conflict and the location of

the @nflict will determine the set of possible activities
that, if moved or deleted, maesolve tle onflict. In
addition, a ne stat time ard duation must be assigned
to the activity. If it was decided toytrto add a new
activity, the activiy type must b dosen fron the list of
possible types determineds bthe nflict. For abstract
activity conflicts, the repair algorithm ilv mog likely
choose to deth the activity. If it has multiple
decompositions, one of them must dhosen. Deciding to
abstract an actiwtrequires choosing which actiyitto
abstract. When making a reservation in an attetap

should be used. When the heuristic is not used, other
heuristics can be specified, otherwise the decision will be
made randomly.

ASPEN currenf has ©®me built-in domain-independent
heuristics that can be used fepairing conflicts. First, a
heuristt exists for sorting conflicts Y their type. This
heuristic prefers conflicts that requirewnactivities (i.e.,
planning tye ®nflicts) and then considers conflicts on
timelines (i.e., scheduling tgponflicts). This heuristic
seems to work well and therefor has a high level of

resolve a conflict, a resource or state variable must be confidence for most of our models.
chosen for the set of possible resources or state variables.

Also, if the reservatio has an unspecified value, one
must & dosen for it. Canceling reservations only
requires choosing which reservation to cancel. If the
repair algorithm has decided to connect a temporal
constraint, the specific actiyifor the onstrairt must be
selected. When disconnecting, yithe @nstrairt to be
disconnected must eb diosen. Finally, changing a
parameter value requires choosing avnalue for the
parameter. After all decisions are made and the repair
method is performed, ¢hdfects are propagated and the
new conflicts ae @mputed. This process repeats until no
conflicts exist or a time limit has been exceeded.

5. SEARCH HEURISTICS

All throughot the iterative repair algorithm, many

There is also a heuristic for selecting the repair method
for a given conflic type. This heuristic prefers moving
activities for repairing mostypes of conflicts. If move is
not selected, the next preferred method is adding new
activities. Finally, a small percentage of the time, it will
choose to delete an activity. Obviously, these methods are
only chosen for those conflicts for which thmake sense
(e.g., timelire @nflicts). Sone ®nflicts have on} two
possible repair methods, one of which is to delete,
therefor making the decision much easier (e.g.,
undetailed activit conflicts can on} be resolved by
detailing or deleting the activity).

Another significant heuristic available in ASPEN is a
heuristic for selecting statime intervals for activities
being moved or created. This heuristic first tries selecting

decisions must be made. In other words, there are manystat time intervals that not owlresolve tle arrent

ways in which a conflitmay be resolved. Some ways
ultimately work better than others do. For example,
deleting an activit may resolve a resouoe onflict
caused P that activity. However, that actiyitmay have
been requiredybother activities. Or, if the actiyitwas a
high-level goal, the user might prefer to have as many
goak stisfied as possible. Another typical example
involves choosing a location to move an activity. Many
locations my resolve tle ®nflict being addressed, but
mary locations my also create addition conflicts. In
order to guide the search toward more fruitful decisions,
the user can define a set of séaheuristics.

In ASPEN, a heuristic is a function that orders and
prunes a list of choices for a particular decision in the
search. Heuristics can be defined at each ef dtoice
points in the algorithm. For example, one heuristic might
soit the list of conflicts, indicating which conflicts to
address first. In addition, dacheuristc @an use the
knowledge of all previous decisions made. For example,
the heuristic for deciding which method to use to resolve
the onflict can (and should) be dependant on which
conflict was chosen. Ehcheuristc caan be assigned a
confidence levetha indicates he often the heuristic

conflict but also do not createyanew conflicts’. If there
are no such statimes, the heuristic nyatry selecting
times that create opla few conflicts. If this lig is also
empty, thenit may select stdrtimes that simpl resolve
the airrent conflict. Sometimes, howevér,may decide
to return an emptlist, indicating tha this particular
activity should not be moved or added.

A few other heuristics & arrently being used in some
of the domains modeled in ASPEN. All of them,
however, are relativelsimple and work well for the wide
range of ASPEN models.

6. RELATED WORK

This work builds on considerable previous work in
iterative repair problem solving The high-speed local

' In general, ASPEN provides functions for querying the

current plan about operations that can be performed or
values that can be assigned without creating new
violations. These algorithms are interesting in their own

right, and will be discussed in future work.

search techniques used in ASPEN are an evolution of
those developed for the DCAPS system [Chien et al.,
1998a] that has proven rolbia actual applicationsin
terms of related work, iterative algorithms have been
applied to a wide range of computer science problems
such as traveling salesman [Lin & Kernighan, 1973] as
well as Artificial Intelligence Planning [Chien &
DeJong, 1994; Hammond, 1989; Simmons, 1988;
Sussman, 1973]. lIterative repair algorithms have also
been used for a number of scheduling systenihe
GERRY/GPSS system [Zweben et al., 1994; Pehhl.,
1994] uses iterative repair with a global evaluation
function and simulated annealing to schedule space
shuttle groud processing activities The Operations
Mission Planner (OMP) [Biefeld & Cooper, 1991] system
used iterative repair in combination with a historical
model of the scheduler actions (called chronologies) to
avoid cycling ad getting caughin local minima. Work

by [Johnston & Minton, 1994] shows Wwothe min-
conflicts heuristic can be used notyfdr scheduling but
also for a wide range of constraint satisfaction problems.
The OPIS system [S. Smith, 1994] canodis viewed as
performing iterative repair. However, OPIS is more
informed in the application of its repair methods in that
it applies a set of analysis measures to chasie
bottleneck before selecting a repair methodwith
iterative repair and local search technigues, we are
exploring approaches complemenntato backtracking
refinement search approach used in the N&llennium
Deep Space One Remote Agent Experiment Planner
[Muscettola et al., 1997].

7. CONCLUSIONS AND FUTURE WORK

Planning and scheduling technojogffers considerable
promise in automating spacecraft operations. Planning

and scheduling spacecraft operations involves generating

in addition b being conflict-free. We take an approach
that parallels iterative repair callediterative
optimization Here, ve dassify a set of user preferences
for certain plan characteristics. These preferences are
used to calculate a score for the plan. The iterative
optimization algoritin makes plan modifications
suggested b the preferences in order to increase the
overall score.

ACKNOWLEDGEMENTS

This work was performed yb the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

REFERENCES

Biefeld, E., and Cooper, L., “Bottleneck Identification
Using Process ChronologiesProceedings bthe 1991
International Joint Conference on Artificial Intelligence
Sydney, Australia, 1991.

Chien, S., and DeJong, G., “Constructing Simplified
Plans via Truth Criteria ApproximationProceedings of
the Second International Conference on Atrtificial
Intelligence Planmg S/stems Chicago, IL, June 1994,
pp. 19-24.

Chien, S., Knight, R., Stechert, A., Sherwood, R., and
Rabideau, G., “Integrated Planning and Execution for
Autonomous SpacecraftProceedings bthe 1999 IEEE
Aerospace Conferencéspen, CO, March, 1999.

Chien, S., Rabideau, G., Willis, J., and Mann, T.,
“Automating Planning and Scheduling of Shuttle
Payload Operations,”Atrtificial Intelligence Jburnal

a sequence of low-level spacecraft commands from a set SPecial Issue on Applications998.

of high-level science and engineegimoals. We have
extended and implemented a techeicmlled iterative
repair for automaticalj resolving conflicts in a
plan/schedule. In addition, we have isolated a set of
conflict types tha identify plan violations as well as
suggest ways in which to repair the violation.

Current and future work includes integrating repair
planning with execution [Chien et al., 1999]. Here, the
idea is to continuougl replan aroud updted

information coming from execution monitoring. As an

embedded system, ASPEN would enable fast response to) .
)Fukunaga, A., Rabideau, G., Chien, S., and Yan, D.,

unforeseen events (e.g., faults or science opportunities
with little or no human interaction. In addition, we are

also working on a framework for plan optimization. In

this case, the objective is to dirdans wih high quality

Chien, S., Smith, B., Rabideau, G., Muscettola, N.,
Rajan, K., “Automated Planning and Scheduling for
Goal-Based Autonomous SpacecraftfEE Intelligent
SystemsSeptember/October, 1998, pp. 50-55.

Deale, M., Yvanovich, M., Schnitzius, D., Kautz, D.,

Carpenter, M., Zweben, M., Davis, G., and Daun, B.,
“The Space Shuttle Ground Processing System,” in
Intelligent SchedulingMorgan Kaufman, San Francisco,

1994,

“Toward an Application Framework for Automated
Planning and Scheduling,Proceedings b the 1997
International Symposium of Atrtificial Intelligence,

Robotics and Automation for SpadgSAIRAS-97),
Tokyo, Japan, Jul1997.

Hammond, K., “Case-based Planning: Viewing Planning
as a Memoy Task,” Academic Press, San Diego, 1989.

Johnston, M., and Minton, S., “Analyzing a Heuristic
Stratey for Constraint Satisfaction and Scheduling,” in
Intelligent SchedulingMorgan Kaufman, San Francisco,
1994.

Lin, S., and Kernighan, B., “An Effective Heuristic for
the Traveling Salesman ProblenQperations Research
Vol. 21, 1973.

Minton, S., and Johnston, M. “Minimizing Conflicts: A
Heuristic Repair Method for Constraint Satisfaction and
Scheduling Problems,Artificial Intelligence 58:161-
205, 1988.

Muscettola, N., Smith, B., Chien, S., Fry, C., Rajan, K.,
Mohan, S., Rabideau, G., Yan, D., “On-board Planning
for the Nev Millennium Deep Space One Spacecraft,”
Proceedings Dthe 1997 EEE Aerospace Conference
Aspen, CO, February, 1997, v. 1, pp. 303-318.

Sherwood, R., Govindjee, A., Yan, D., Rabideau, G.,
Chien, S., Fukunaga, A., “Using ASPEN to Automate
EO-1 Activity Planning,”Proceedings bthe 1998 IEEE
Aerospace Conferencéspen, CO, April, 1998.

Simmons, R., “Combining Associational and Causal
Reasoning to Solve Interpretation and Planning
Problems,” Technical Report, MIT Artificial Intelligence
Laboratory, 1988.

Smith, B., Sherwood, R., Govindjee, A., Yan, D.,
Rabideau, G., Chien, S., Fukunaga, A., “Representing
Spacecraft Mission Planning Knowledge in ASPEN,”
Artificial Intelligence Planmg Sstems Workwp on
Knowledge AcquisitignPittsburgh, PA, 1998.

Smith, S., “OPIS: An Architecture and Methodao}dgr
Reactive Scheduling,” ilntelligent SchedulingMorgan
Kaufman, San Francisco, 1994.

Sussman, G., “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial
Intelligence Laboratory, 1973.

Zweben, M., Daun, B., Davis, E., and Deale, M.,
“Scheduling and Rescheduling with Iterative Repair,”
Intelligent Scheduling Morgan Kaufmann, San
Francisco, 1994, pp. 241-256.

