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Abstract— On-demand mobile facility services are a promis-
ing approach to mitigate social problems related to transporta-
tion. Route optimization to satisfy customer demands is an
essential technology to realize the services. Most studies of
the route optimization for the services have been focused on
finding a better assignment from vehicles to customers and a
better order of visiting customer locations under the assumption
that the customers waiting at the locations without moving. In
this paper, we formulate cooperative routing problem between
customers and vehicles, which minimizes total travel cost by
optimizing both vehicle and customer routes. We also propose
a heuristic approach to find solutions for large instances. We
demonstrate that customer cooperation helps to reduce the total
travel cost compared to a solution of standard vehicle routing
problem in synthetic experiments using the road network of
Manhattan, NY, USA. We confirmed that the total travel cost
of the customers and the vehicles was reduced by 20% using
our heuristics comparing to solutions of the vehicle routing
problem with little extra computational cost.

I. INTRODUCTION

a) Background and motivation: According to estimates
by United Nations, worldwide, the population living in urban
areas will increase to around 60% by 2050 [1]. This
population concentration has a negative effect not only in
urban areas but also in rural areas: aging of residents and
depopulation. Mobility on demand services are a promising
approach to mitigate the social issues related to transporta-
tion. Mobile facility services such as food trucks, mobile
supermarkets and water trucks would help residents who
have difficulties visiting restaurants and supermarkets due
to reasons such as travel distance or health conditions.

In such services, it would be ideal for vehicles to visit
each customer location. However, this is often difficult due
to several reasons. For example, the number of vehicles is
insufficient or roads are too narrow for vehicles to pass.
The situation would be mitigated with a little help from
the customers in many cases. Figure 1(a) shows an example
of the route in Manhattan, New York, USA, which found
by solving vehicle routing problem (VRP) [2]. The vehicle
needs to take detours to visit customers who are on one-
way roads. On the other hand, if the customers travel a bit
closer location to the vehicle route, the vehicle can save travel
distance and time (Fig. 1(b)).

In this paper, we propose the CMFRP, a formulation for
cooperative mobile facility routing problems among cus-
tomers and vehicles. This formulation seeks to minimize the
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(a) a route with VRP (b) a route with CMFRP
Fig. 1: Examples of routes: (a)solution of vehicle routing problem
and (b) solution of our cooperative routing problem. Person icons
denote customer locations and cash icons are the location where
customers use a mobile facility (e.g., to take away foods).

total travel cost by optimizing the routes of both vehicles
and customers. This optimization would help not only the
mobility service company but also the customers using
the service because the number of customers that can use
the service vehicles will increase by improving the travel
distance and time of the vehicles.

b) Statement of contributions: We formulate CMFRP
as an integer programming problem (IP) based on the coop-
erative routing problem among heterogeneous vehicles pro-
posed by Otaki et al. [3]. We propose a heuristic approach for
large instances of the CMFRP, which finds an initial solution
by using a VRP solver and then locally updates a solution by
iteratively solving subproblems. We experimentally evaluate
our heuristic solver comparing to solutions of VRP using a
road network of Manhattan, New York. We demonstrate that
the total travel distance for the mobile facility services was
reduced by 20% using our heuristics comparing to solutions
of VRP with little extra computational cost.

II. RELATED WORK

Mobile facility routing problem (MFRP) seeks to optimize
routes for a fleet of mobile facilities when each location on
the routes can provide service to several events [4]. The
formulation maximizes the spatio-temporal distributed de-
mand served by these mobile facilities during a continuous-
time planning horizon, but does not consider costs for
both vehicles and customers. Our CMFRP formulation finds
routes to minimize costs for both vehicles and customers.



The multi-vehicle covering tour problem (m-CTP), which
is similar to the MFRP, is the problem of finding vehicle
routes that cover all demand points of customers, where the
vehicles can cover several demand points at each location
on the routes [5]. The m-CTP seeks minimal cost routes
which cover all points, while the MFRP seeks routes that
maximize the demand serviced by the facility. The m-CTP
considers only vehicle travel costs, but not the customer
costs of traveling (e.g., via walking) from a location to the
event points served from the location. On the other hand,
our CMFRP formulation considers non-vehicle travel costs
incurred by the customers and minimizes the total travel costs
for both vehicles and customers.

Otaki et al. proposed the cooperative routing problem for
heterogeneous vehicle types [3], [6]. The problem models
truck platooning and truck-drone cooperation for last-mile
logistics. Their formulation seeks to find cooperative routes
minimizing travel costs for vehicles, under giving table
of effect for each cooperation among vehicle types (e.g.,
platooning between trucks reduces fuel consumption due
to the air resistance reduction). We formulate the CMFRP
by modifying their formulation. The difference is that in
the formulation by Otaki et al., all type of vehicles have
destinations, while the customers, which is a type of vehicles
in their setting, have no destinations in the CMFRP because
the goal of the customers is to use a mobile facility (e.g., to
take away foods) but not to ride the mobile facility in order
to go somewhere else.

The vehicle routing problem (VRP) and its many varia-
tions (e.g, capacitated VRP [7], VRP with time windows [8]
and pickup-and-delivery problem [9]) have been widely
studied, and many heuristics for finding solutions to large
instances have been developed [2]. The VRP seeks to find
vehicle routes to minimize the travel cost. In the VRP setting,
vehicles travel to locations of customers and customers stay
at initial location. The CMFRP is a generalization of the
VRP, where both the vehicles and customers can move.
Thus, in the heuristic we propose in Section IV, we use the
solution returned by a VRP solver as an initial solution for
the CMFRP.

III. COOPERATIVE ROUTING PROBLEM BETWEEN
CUSTOMERS AND VEHICLES

In this section, we propose a formulation of CMFRP,
which is a problem to optimize paths of vehicles and
customers to minimize a total travel cost. Table I summarizes
the notation used in this paper. The formulation is developed
on the model of cooperation among heterogeneous vehicles,
proposed by Otaki et al. [3]. An instance of the CMFRP is
defined by:

• a transportation network represented by a graph G =
V, E) with nodes V and edges E , where V represents
locations and E represents roads between locations.

• a set of vehicles; the number of mobile facility vehicles
is Nk. We use [NK ] to denote {1, ..., Nk}, the set of
indices corresponding to each vehicle.

TABLE I: Notation of CMFRP

Symbol Description

NC the number of customers
NK the number of vehicles
wi,j,k A cost of vehicle k to travel from i to j
wi,j,c A cost of customer c to travel from i to j
G(V, E) A graph with a sef of nodes V and edges E
Qk The maximum number of times customers can use

vehicle k

ok an origin node of vehicle k
dk a destination node of vehicle k
oc an origin node of customer c

xi,j,k A binary variable where xi,j,k = 1 when vehicle
k travel from i to j otherwise 0

xi,j,c A binary variable where xi,j,c = 1 when customer
c travels from i to j, or vehicle v travels from i to
j after customer c uses the vehicle otherwise 0

µc,k
i,j A binary variable where µc,k

i,j = 1 when customer
c already used vehicle k before the vehicle travels
from i to j otherwise 0

Ck A set of customers assigned to vehicle k
Mk [n1, . . . , n|Ck|]; a list of the meeting nodes be-

tween customers and vehicle k

• a set of customers; the number of customers is NC .
We use [NC ] to denote {1, ..., NC}, the set of indices
corresponding to each customer.

• vehicle/customer travel costs between locations in G,
where the cost of a moving vehicle k from i ∈ V to
j ∈ V is denoted by w(K) := {wi,j,k}, and the cost of
a customer c transporting himself/herself from i ∈ V to
j ∈ V is denoted by w(C) := {wi,j,c}.

• the initial locations of each vehicle k ∈ [NK ], denoted
by o(K) := {ok}.

• the destinations of each vehicle vehicle k ∈ [NK ],
denoted by d(K) := {dk}.

• the initial locations of each customer c ∈ [NC ], denoted
by o(C) := {oc}.

• the maximum number of times customers can use each
vehicle, denoted by Qk, for each v ∈ [NK ] .

Note that customers do not have specific destinations in
this model because the goal of the customers is to use the
services provided by a mobile facility vehicle (e.g., pick up
food/groceries from the vehicle), and not to ride the vehicle
to some destination.

We formulate CMFRP as an integer programming prob-
lem. The decision variables are the binary variables x(C) :=
{xi,j,c}, x(K) := {xi,j,k} and µ := {µc,k

i,j }, defined in Table
I. xi,j,c = 1 when customer c travels from i to j, or the
vehicle used by customer c travels from i to j after the
customer uses the vehicle otherwise xi,j,c = 0. xi,j,k = 1
when vehicle k travels from i to j otherwise xi,j,k = 0.
µc,k
i,j = 1 when customer c already used vehicle v before the

vehicle travels from i to j otherwise µc,k
i,j = 0.

In addition, we use πc and πk to denote paths of customer
c and vehicle k, where a path is a sequence of nodes. The



paths can easily be computed from the decision variables
{xi,j,c}, {xi,j,k} and {µc,k

i,j }.
A solution to the CMFRP is a path for each vehicle and

each customer. We seek a solution which minimizes the total
travel cost incurred by all vehicles and customers for the
following CMFRP;

minimize
x(K),x(c),µc,k

∑
(i,j)∈E

∑
k∈[NK ]

wi,j,kxi,j,k

+
∑

(i,j)∈E

∑
k∈[NK ]

∑
c∈[NC ]

wi,j,c

(
xi,j,c − µc,k

i,j

)
, (1a)

subject to

2µc,k
i,j ≤ xi,j,c + xi,j,k, (∀c ∈ [NC ] , k ∈ [NK ] , (i, j) ∈ E),

(1b)∑
k∈[NK ]

µc,k
i,j ≤ 1, (∀c ∈ [NC ] , (i, j) ∈ E), (1c)

∑
c∈[NC ]

µc,k
i,j ≤ Qk, (∀k ∈ [NK ] , (i, j) ∈ E), (1d)

∑
j∈V

xi,j,k −
∑
j∈V

xj,i,k =

 1 if i = ok, ok ̸= dk
−1 if i = dk, ok ̸= dk
0 otherwise

,

(∀i ∈ V, k ∈ [NK ]), (1e)∑
j∈V

xi,j,c −
∑
j∈V

xj,i,c =

{
1 if i = oc, i ̸= dk,
0 otherwise ,

(∀i ∈ V, k ∈ [NK ] , c ∈ [NC ]), (1f)∑
j∈V

xi,j,c −
∑
j∈V

xj,i,c ≤ 0, (∀i ∈ {dk}, c ∈ [NC ]), (1g)

∑
i∈{dk}

∑
j∈V

xi,j,c −
∑
j∈V

xj,i,c

 = −1, (∀c ∈ [NC ]),

(1h)
xi,j,v, xi,j,c, µ

c,v
i,j ∈ {0, 1}. (1i)

The first term of the objective function (1a) denotes the total
travel cost of vehicles. The second term of the function is
the cost of customers because we can obviously derive that
xi,j,c − µc,k

i,j is 1 on the edges (i, j) customer c travels and
0 after the customer used the vehicle k (see the definitions
of xi,j,c and µc,k

i,j ). The constraints (1b) indicate that µc,k
i,j

can be 1 iff both xi,j,c and xi,j,k are 1. That is, µc,k
i,j can

be 1 after customer c uses vehicle k. The constraints (1c)
represent that customer c can use only one vehicle and the
constraints (1d) denote that the number of customers that use
vehicle v is less than or equal to Qk. The constraints (1e)
and (1f) are flow conservation constraints for vehicles. The
constraints (1g) and (1h), which are major difference from
the formulation proposed by Otaki et al. [3], denote flow
conservation constraints for customers and customer c always
uses only one of the vehicles respectively. The constraints are
needed because the locations where the customers use the
vehicles are not given in CMFRP in advance while origins
and destinations are given in their formulation as requests.
In our formulation, we can set different travel cost from

i to j for each customer and each vehicle. For instance,
some customers could travel less distance due to their health
conditions than others.

CMFRP is obviously NP-hard problem because vehicle
routing problem, which is a special case of CMFRP when
customers stay at demand locations, is NP-hard. The number
of decision variables are |V|2 (NC +NK +NCNK) and of
constraints are |V|2 (NC +NK +NCNK) + |V|NCNK +
NC .

IV. PROPOSED METHOD

In this section, we propose our heuristic approach to find
a solution of CMFRP based on two ideas: local update
by solving subproblems and node reduction using distance
constraints.

A. Local update by solving subproblems

Our idea is to improve a solution iteratively applying a
local update based on a feasible solution. Figure 2 (a)-(e)
show examples of how the solutions are updated using our
approach at each improvement iteration t. Icons of people,
vehicle and house denote customers, vehicle and depot
respectively. They can stay at grid points and travel adjacent
grid points. The paths are represented by blue arrows in the
figure. The vehicle leaves and returns to the depot while
visiting the customers.

For example, in Fig. 2 (d), customers 1 and 3 wait at the
initial locations without moving, and customer 2 travels one
step at iteration t = 3. We can find a better solution (gray
dashed arrows) by optimally solving a subproblem (reduced
CMFRP instance) with only one customer (customer 3), and
the vehicle departs from the meeting point and returns to the
depot. The subproblem is more tractable than the original
one because it only has one customer.

We show the update process in Algorithm 1. πk[0] and
πc[0] are the first node in each path. πk[−1] is the last node
in the path. SolveCMFRP(G,w,o(K),d(K),o(C)) optimally
solves the CMFRP using an IP solver such as Gurobi.
w denotes {w(K),w(C)}. SolutionToRoute(·) converts the
solution returned by SolveCMFRP(·) to paths of vehicles
and customers, and a set of vehicle assignment C :=
{Ck}k∈[NK ], where Ck denotes customers assigned to ve-
hicle k. Let M := [M1, . . . ,MNK

] be a set of lists for
meeting nodes between vehicle k and customers in Ck. Let
Mk := [n1, . . . , n|Ck|] be the list of the meeting nodes
between customers and vehicle k. The meeting node for
customer c are defined as the first node where xi,j,c = 1 and
µc,k
i,j = 1 on the path of customer c. π(K) := {πk}k∈[NK ]

is a set of vehicle paths and π(C) := {πCk
}k∈[NK ] is a

set customer paths, where πCk
denotes the path list for the

customers assigned vehicle k. The list is sorted in order in
which customers meet the vehicle. Nupdate is the number of
the updated vehicle paths.

The algorithm solves the subproblem defined by G, w,
o(K), d(K), and o(C), which are computed from line 1 to line
3, to improve the current solution (i.e., π(K) and π(C)) at
line 4. We compute the updated solution and meeting points



(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4

Fig. 2: Example of update (allowing 1 customer to be moved at each improvement iteration t): Blue lines are current solutions and gray
dashed lines are improved solution found by our local improvement method at each iteration. Red circles are a vehicle departure and goal
locations. Blue triangles represent the customer allowed to move in current iteration.

from the decision variables returned by SolveCMFRP(·). We
replace the current solution πk and πCk

to the updated
solution π̂k and π̂Ck

for vehicle k and the customers
assigned to the vehicle when π̂k is not equal to πk (line
7-9).

When we consider only one customer in the subproblem,
it constrains the update algorithm to preserve order of cus-
tomers, i.e., Update(·) cannot find a solution which changes
the order of customers served. Increasing the number of cus-
tomers considered in the subproblem mitigates this issue and
allows Update(·) to find solutions that swap some customers
in the current order. That is, the better solution could be
found by considering more customers in the subproblem, at
the cost of incurring more computational effort to solve a
larger subproblem.

Algorithm 1 Update(G,w,π(K),π(C))

Input: G,w,π(K),π(C))
Output: π(V ),π(C),M,C, Nupdate
1: NK , NC ← |π(K)|, |π(C)|
2: o(K),d(K) ← [πk[0]]k∈[NK ], [πk[−1]]k∈[NK ]

3: o(C) ← [πc[0]]c∈[NC ]

4: x(K),x(C),µ← SolveCMFRP(G,w,o(K),d(K),o(C))
5: π̂(K), π̂(C),M,C← SolutionToRoute(x(K),x(C),µ)
6: Nupdate ← 0
7: for k in {k|π̂k ̸= πk} do
8: πk ← π̂k

9: πCk
← π̂Ck

10: Nupdate ← Nupdate + 1

11: return π(V ),π(C),M,C, Nupdate

B. Node reduction using distance constraints

In many cases, we do not consider the entire input graph
in Algorithm 1. We reduce the graph by eliminating nodes
such that including them can only result in a solution which
is dominated by the incumbent solution. Figure 3 illustrates
this idea. The vehicle icon represents the vehicle that travels
from customer 1 to customer 4. The blue arrows denote a
current solution. All travel costs between pairs of adjacent
nodes is 1. When we use Algorithm 1 to find a better solution
(e.g., gray arrows), we do not need to consider the orange
nodes because the cost of any vehicle paths visiting their
nodes is always larger than the cost of the current path (i.e.,
1 → 2 → 3 → 4), which is 5.

Fig. 3: Example of the nodes that can be reduced using distance
constraints. Blue edges are the current paths and gray edges are
the updated path. The orange nodes and edges do not need to be
considered.

We use the induced graph with the nodes defined as
follows;

V̂ :=

 i ∈ V,
i wπk

+ wπc
≥ wok,i,k + wi,dk,k,

ok := πk[0], dk := πk[−1],∀k ∈ [NK ]

 , (2)

where wu,v,k := minπu,v,k

∑
(l,m)∈πk

wl,m,k and wu,v,c :=
minπu,v,c

∑
(l,m)∈πc

wl,m,c denote the lowest cost of the
paths from i to j for each vehicle k and customer c
respectively. wπk

:=
∑

(u,v)∈πk
wu,v,k is the path cost of

vehicle k. Let wπc
:=

∑
c∈Ck

∑
(u,v)∈πc

wu,v,c be the total
path cost of customers assigned to vehicle k. V̂ and Ê are
the nodes and edges of the reduced graph. The inequality in
Eq. (2) indicates that the nodes with larger travel costs from
an origin location than the current solution are reduced.

C. Proposed method

We show our proposed method when simultaneously up-
dating the paths of N customers in Algorithm 2. We need an
initial solution π(K) and vehicle assignments C in order to
apply Algorithm 1. We use the VRP solver with sophisticated
heuristics to find an initial solution and vehicle assignment
because CMFRP can recast to VRP when customers keep
to stay at initial locations and the VRP solver is more
efficient than IP solvers (line 1). We extract a subset of
the current paths focused in next update at line 7, where
Mk[s] denotes s-th meeting node on the path of vehicle v
and πk[Mk[s] : Mk[e]] is a path from Mk[s] to Mk[e]. Let



πCk
[s : e] represents the paths from s-th customer to e-th

one on the vehicle path. The induced subgraph is constructed
using Eq. (2) from line 9 to line 10. We update the paths
using Algorithm 1 at line 11 and 12. The process is continued
while improving the paths.

Algorithm 2 SolveCMFRPheu(G,w,o(K),d(K),o(C))

Input: G,w,o(K),d(K),o(C)

Output: π(K),π(C),C
1: π(K),M,C← SolveVRP(G,w,o(K),d(K),o(C))
2: for k in [NK ] do
3: Nupdate ← 1
4: while Nupdate > 0 do
5: Nupdate ← 0
6: for s← 1, e← N ; e ≤ |Ck| − 1; s++, e++ do
7: π̂(K) ← {πk[Mk[s− 1] : Mk[e+ 1]]}
8: π̂(C) ← {πCk

[s : e]}
9: V̂ ← Computed using Eq. (2)

10: Ĝ← Subgraph(G, V̂)
11: π̂(K), π̂(C), M̂, Ĉk, cnt← Update(Ĝ,w, π̂(K), π̂(C))
12: πk, {πc}c∈Ck

,Ck,Mk ← π̂(K), π̂(C), Ĉk, M̂[0]
13: Nupdate ← Nupdate+cnt
14: return π(K),π(C),C

V. EXPERIMENTS

A. Experiment Setup

We evaluated our formulation and heuristics using a road
network of Manhattan, New York, USA extracted from
OpenStreetMap [10]. The number of nodes and directed
edges are 4573 and 9871. We set the number of vehicles
NK = 1. We evaluated the total travel cost and the runtime
when the number of customers NC are 50, 100, 200, and 500.
The initial locations of the vehicles {ok} and the customers
{oc} are selected uniformly at random from the set of nodes.
We set the destinations of the vehicle {dk} to the same nodes
as their initial locations. The travel costs between each pair
of adjacent nodes (i, j) for the vehicle {wi,j,k}, and the
customers {wi,j,c} were set to the travel distance between
i and j. We evaluated our heuristics at only Nk = 1 because
our heuristics do not change the assignment itself due to
update customer paths on an assigned vehicle path.

In the experiments, we compared CMFRP to VRP for the
travel cost and runtime. We also evaluated the difference
among the number of customers updated simultaneously
using Algorithm 1.

In order to calculate Eq. (2) in Algorithm 2, we need to
evaluate the minimal cost of traveling from ok to i ∈ V and
from i ∈ V to dk NK times. In practice, this dose not incur
significant cost, as we use the Hub-Labeling method [11],
which can return minimal path costs among any pair in
continental size networks in less than 1 millisecond, after
an initial preprocessing overhead (14 minutes for continental
size networks in their article, 76 seconds in our experiments
with our naive implementation).

We evaluated the performance on a PC with an Intel
Xeon CPU Broadwell@2.6 GHz and 112 GB memory. We
solved the IP formulation of CMFRP by calling an LP solver
included in Gurobi-8.1.1 [12] from a Python code. We solved
the VRP using Google OR-Tools [13].

B. Results

First, we tested to solve the instances without our heuris-
tics using Gurobi. We, however, found that no feasible
solutions were returned in 10 hours even for relaxed IP
instances with 50 customers. Therefore we only show the
results of our heuristics for CMFRP in this section.

1) Travel cost: We evaluated travel cost with respect to
the number of customers. Figure 4 shows the vehicle travel
cost, the travel cost per customer and total travel cost for
each approach. The blue line denotes the performance of
paths optimized by VRP and other lines represent the ones
by CMFRP. Figure 4 (a) indicates that the paths optimized by
CMFRP significantly reduce vehicle travel cost comparing to
the VRP solutions. Figure 4 (b) also shows that the travel
cost per customer was several hundreds meters, and the effect
of increasing the travel cost on each customer was limited.
The travel cost of customers for VRP is of course zero
because the customers keep to stay at their initial locations.
The total travel cost (including vehicles and customers) was
reduced by 20%, compared to the VRP formulation from
Fig. 4 (c). Note that as the number (and therefore the density)
of customers increase, the distance from their initial locations
to the locations where they are served by the vehicle tends
to decrease, resulting in lower customer travel costs.

We also evaluate the effect of varying the number of cus-
tomers N , which is updated simultaneously in Algorithm 1.
The results showed in Fig.4 indicated that although N had an
effect on both vehicle and customer travel costs considered
separately, there was little effect on the total travel cost.

2) Runtime: We evaluated the runtime of the methods
with respect to the number of customers. Figure 5 shows
the runtime of each approach: (a) the heuristics without
search node reduction presented in subsection IV-B (i.e.,
Algorithm 2 without line 8 and 9) and (b) the heuristics
with the node reduction (Algorithm 2). The blue line denotes
the runtime of the VRP solver and the other lines represent
the one of our heuristics with varying number of customers
updated simultaneously in the local updates. The results
indicate that the heuristics with the node reduction can find
solution with much lower computational cost than without
the node reduction. The results in Fig. 5 (b) show that the
runtimes increase as N , the number of customers included
in the subproblems solved by Update. However, as discussed
above, Fig. 4 shows that N has little effect on total travel
cost, so in practice, the tradeoff between the additional
runtime due to increasing N and the reduction in travel costs
needs to be carefully considered.

VI. CONCLUDING REMARK

In this paper, we proposed the cooperative mobile facility
routing problems among customers and vehicles, named
CMFRP. We formulated CMFRP as an integer programming
problem. We also developed a heuristic approach to finding
feasible solutions in larger instances efficiently. We presented
a local update by solving a lot of small CMFRP instances
iteratively after finding initial solutions using a VRP solver.



(a) Vehicle travel cost (b) travel cost per customer (c) Total travel cost
Fig. 4: Travel cost optimized using VRP and CMFRP against the number of customers: (a) vehicle travel cost, (b) travel cost per customer
and (c) total travel cost. Blue lines denotes the results of paths optimized by VRP. The other lines are the results solving CMFRP. N
denotes the number of customers updated simultaneously using Algorithm 1.

(a) Heuristics without search node reduction (b) Heuristics with search node reduction
Fig. 5: Runtime for each method with respect to the number of customers. (a) heuristics without search node reduction and (b) heuristics
with search node reduction. Blue lines denotes the results of paths optimized by VRP. The other lines are the results solving CMFRP. N
denotes the number of customers updated simultaneously using Algorithm 1.

We also developed the method to reduce the number of nodes
in the small sub-problems using distance constraints.

We evaluated our heuristics with numerical experiments
using the road network of Manhattan, New York, USA
extracted from OpenStreetMap. The results showed that the
paths found by CMFRP reduced 20% of the total travel cost
comparing to paths by VRP. We also confirmed that the
effect of the number of customers updated simultaneously
in Algorithm 1 is little against the travel cost. Therefore a
small number of customers would be enough to reduce the
total travel cost in practice. Moreover, we also confirmed that
the travel cost of each customer was limited. We analyzed
the increase in the runtime of our heuristics comparing
to the VRP solver. Our search node reduction helped to
reduce the runtime in our heuristics. Moreover, our heuristics
needed little extra runtime to find cooperative paths among
customers and vehicles. Our approach cannot change the
assignment itself because updating paths of customer on
a assigned vehicle path. We will develop such heuristics
updating vehicle assignments as future work.
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